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Abstract—This paper proposes a new approach based on the Genetics Algorithm to determine the optimal kernel 

parameters of the Reproducing Kernel Hilbert Space (RKHS) model.  These parameters are the width of the kernel function 

and the regularization parameter. The proposed meta-method has been tested to model some benchmarks such a benchmark 

of DC-Motor [21], a Wiener-Hammerstein benchmark [17], a Feedback’s Process Trainer PT326 [20] and a Continuous 

Stirred Tank Reactor CSTR [22] and the results are satisfactory. 
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1. Introduction 

     Recently a new modelling technique of nonlinear 

systems developed on Reproducing Kernel Hilbert 

Space (RKHS) is proposed. This technique provided 

a new model entitled RKHS model [1], [2], [6], [10] 

and [24]. The solution is obtained by solving a 

quadratic optimization problem by using the learning 

algorithms such as support vector machines (SVM) 

[3], Regularization Networks (RN) [7] and Kernel 

Principal Component Analysis KPCA [5], [23].  

These algorithms known as kernel methods are 

characterized by the kernel and the regularized 

parameters which should be determine in order to 

guaranty good generalization ability. In literature 

many techniques are used to determine these optimal 

parameters such as cross validation technique [9],  

 

 

Monte Carlo method [18]. In this paper, we propose 

a new approach to determine the optimal parameters 

of RKHS model which is based on the genetic 

algorithms. 

The paper is organized as follows. In section 2, the 

RKHS model is reminded. The Regularized 

Networks method is presented in the section 3. 

Section 4 is devoted to the Genetic Algorithms. The 

optimization of RKHS Model Parameters with 

Genetic Algorithms is presented in section 5. Section 

6 validates the proposed algorithm on the some 

benchmarks. Finally section 7 concludes the paper. 

WSEAS TRANSACTIONS on SYSTEMS and CONTROL Okba Taouali, Najeh Tawfik

E-ISSN: 2224-2856 373 Volume 10, 2015



2. RKHS Model 

Let 
dE    an input space and :k E E    is 

a continuous positive definite kernel.  Let kF  is a 

Hilbert space associated to the kernel k . The kernel 

k  is said to be a Reproducing Kernel of the Hilbert 

Space kF  if and only if:  

               

 

     

,    , .

,  and  ,

 < , ,  >
k

k

k

x E k x F

x t E f F

f t k x t f x

  

   


 F

               (1) 

In literature there exists many reproducing kernels 

such as the Radial Basis function (RBF):  

        
   2 2, exp / 2   ;   ,    k x t x t x t E                (2) 

 The Exponential Radial Basis function (ERBF) 

given by: 

        
   2, exp / 2   ;   ,    k x t x t x t E    

            
(3) 

 The polynomial kernel written as : 

            
    , exp , 1   ;   ,    

p
k x t x t x t E     

         
(4) 

The sigmoidal kernel written as : 

      
    , tanh ,   ;   ,    k x t x t x t E      

            
(5) 

with , , , ,p     are a kernel parameter chosen in 

order to obtain a good generalization ability 

Let’s define the application  [1], : lE    that 

transform the input data in the feature space kF :              

      ,     ,   ,  x t k x t x t E                      (6) 

Let‘s consider a set of data 

    
1, ..., 

,
i i

i M
x y


with

 i nx  , 
 i

y   are 

respectively the system input and output. The 

identification problem in the RKHS kF  can be 

formulated as a minimization of the regularized 

empirical risk.  
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where V is a cost function and   is a regularization 

parameter chosen in order to  guarantee a good 

prediction error. The solution 
*f  [7] of the problem 

(7) is written: 

    * *

1

,
M

i

i

i

f x a k x x


                                 (8) 

The solution (8) can be determined using kernel 

methods such as Regularization Network (RN) [3], 

Support Vector machine [6] (SVM), Reduce Kernel 

principal Component Analysis (RKPCA) [1]. 

 

3. Regularization Network Method 

(RN) 

The Regularized Network technique is based on the 

cost functionV : 

         
           

  2

,
i i i i

V y f x y f x                 (9) 

The parameters  ia   of the solution
*f  are 

determined as following: 

                1

,
1

M
j

i M i j
j

Ma K I y




                       (10) 

The relation (10) is written in the matrix form as:        

 
1

 A MK M I Y


                                          (11) 

where: K   is the Gram matrix that satisfy: 
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            (12) 

4. The proposed approach based on 

Genetics Algorithm 

In order to choose the optimal kernel and 

regularized parameters, the classical approaches fix 

randomly these parameters to obtain a suitable 

RKHS model. These obtained parameters don’t 

provide an optimal solution. 

In literature, many methods of optimization such as 

a cross-validation technique [19] and Monte Carlo 

[18] have been proposed. Using Genetic Algorithms 

(GAs) to obtain an optimal solution has attracted 

growing interest in many researches works [12], 

[13].  The novelty of this approach is the 

assumptions commonly used with conventional 

methods to ensure convergence of the solution [15], 

[16]. The application of these tools to determine the 

RKHS parameter is very interesting. In this section 

the principle of Genetic Algorithms is presented. 

The GAs algorithms are applied to variety problems 

[13], [15]. The GAs applies an evolutionary 

approach to inductive learning. GA has been 

successfully applied to problems that are difficult to 

solve using conventional techniques such as 

scheduling problems, network routing problems and 

financial marketing. After fixing the expression of 

the objective function to be optimized, probabilistic 

steps are involved to create an initial population of 

individuals [14].  

 

5. Optimization of RKHS Model 

Parameters with Genetic 

Algorithms 

The determination of RKHS model needs to 

determine the function
*f eq. (8) with an optimal 

choice of the kernel parameter (for example  )
 
and 

the regularization parameter . This choice has no 

unique solution. The methods used in literatures to 

determine these parameters are all deterministic and 

the solutions that provided haven’t a good 

prediction error.  These methods can generate over-

fitting of RKHS model. 

Solving this problem by Genetic Algorithms 

provides an optimal solution which guarantee better 

generalization ability and overcoming the 

drawbacks of deterministic methods. Using the GAs 

to calculate these parameters requires the 

development of an objective function 
*f  that must 

take into account, simultaneously, the two 

parameters   and   . 

Each couple of parameters used for the elaboration 

of the final model should minimize the function
*f . 

In most works, in order to obtain an optimal RKHS 

model, authors require random values for searching 

parameters. 

 In this paper, we determine the function 
*f tacking 

account of the learning phase error that is less than a 

threshold 310  . This minimization can expand 

the number of solutions of the two parameters   

and    which provides better prediction error. The 

value of this threshold is chosen empirically and can 

be adjusted depending on the application processed.  

After determining the objective function to be 

minimized, we generate, randomly, a population of 
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individuals ,( )ii iP     abilities of individuals iP  

which are evaluated by the function *f . Individuals 

with the highest skills are selected to undergo 

different genetic operators (crossover, mutation and 

selection). After a set number of generations maxG , 

the genetic algorithm converges to the global 

optimum. 

The optimization steps are as follows. 

5.1 Initialization 

It is usually random and it is often advantageous to 

include the maximum knowledge about the 

problem. 

5.2 Evaluation 

This step consist to compute the quality of 

individuals by the allocation a positive value 

entitled "ability or fitness" to each one. The highest 

is assigned to the individual that minimizes (or 

maximizes) the objective function. 

The fitness of an individual is calculated as follows: 

     
2( 1)( 1)

Fitness( ) 2
1

s
s

P Pos
Pos P

Nind

 
  


     (13)                          

The evaluation is characterized by a parameter 

called selection pressure  sP . This method allows 

sP  values in the range of  1,2  

5.3 The Selection 

This step selects a definite number of individuals of 

the current population. The selection is probabilistic. 

It is based on the ability of individuals a way that 

the best ones have a chance of being selected more 

than once. In this step is assigned to each individual 

probability iP  which is proportional to its fitness 

and defined by: 

 

1

i
i M

j

j

F
P

F





                          (14) 

with iF the fitness of individual  i and   M  the size 

of population. 

5.4 The Crossover 

The genetic crossover operator creates new 

individuals. From two randomly selected parents, 

crossover produces two descendants. This step 

affects only a limited number of individuals 

established by the crossover rate (Pc) number. Let 

 
1i i m

X x
 

 and  
1i i m

Y y
 

  be two individuals. 

These two parents will produce two offspring    

 ' '

1i i m
X x

 
  and  '

1
' i i m

Y y
 

  according to the 

equation:  

      

  
 

  
 

i i
i i i i

i i
i i i i

y x
x x s r a

Y X

x y
y y s r a

Y X


   


   

 

                              (15) 

with : 2 kua  , 

 4,5,...: ,20 k  mutation precis kion   ,  0,1u  , 

i domianr r  ,  1,1is    

5.5 The Mutation 

Mutation is used mainly to break the stagnation in 

improvement by introducing new genetic 

information into the population. It consists in 

providing a small disruption to a number (Pm) of 

individuals. The effect of this operator is to 

counteract the attraction exerted by the best 

individuals. This allows us to explore other areas of 

the search space. 
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Let  iu  and  il  be the respective lower and upper 

bounds for all individuals. Let  
1i i m

X x
 

  the 

individual to mutate that will give the new 

individual   ' '

1
i

i m
X x

 
  according to:                                                                                    

   

 

1

1

( ) ( )      if  0.5

( ) ( )     if  0.5

                             if  ,

i i i

i i i i

i i i i

x l x f G r

x x x u f G r

x x u l

   


    
 

           (16) 

with : 

2

max

( ) 1

sb

G
f G r

G

  
   
   

                   

1r  2r : uniform random number between 0 and 1, G : 

the current generation, maxG  : the maximum number 

of generations and sb : shape parameter 

Algorithm: 

1- Repeat until maxG  (the maximum number of 

generations) 

2- Generate randomly an initial population of 

N  pair of kernel parameters  ,    

3- for each   kernel parameters pair  ,   do  

  compute the fitness 

    * *

1

,
M

i

i

i

f x a k x x


  

4- Apply crossover to produce new vectors  

5-  Apply mutation  

6-  Choose better couple  ,   

7-  Reinsertion of better pair of kernel 

parameters  

8- Go to 1 and repeat until optimum value of 

parameters  ,  . 

 

6. Experimental Results 

The proposed genetic approach has been tested to 

identify a benchmark of DC-Motor [21], a Wiener-

Hammerstein benchmark [17], a Feedback’s Process 

Trainer PT326 [20] and a Continuous Stirred Tank 

Reactor CSTR [22]. 

The performances of the resulting RKHS model are 

evaluated using genetic algorithm. This performance 

is formulated as: The Mean square Error (MSE) 

which calculates the cumulated error between the 

process output and the RKHS model output. 

                             
2

1

1 N
i i

i

MSE y y
N 

              (17) 

where  
 i

y and 
 i

y  are respectively the system ant 

the model outputs. 

 

6.1 Benchmark of DC-Motor 

6.1.1 Process description 

The process to be identified is sketched by Fig. 1. 

The data contains two outputs, the first is the 

angular position (rad) and the second is the angular 

velocity (rad/s) of the motor shaft. The input u (V) 

is the voltage applied to the DC-motor. We have 

collected 300 input/output observations from the 

process at a sampling time of 0.1 s. 

 

Fig.1. Schematic diagram of a DC-motor 
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In Figs.2 and 3, the evolution of the input voltage u 

and the output Angular velocity are respectively 

presented. 
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Fig.2.  Input signal u (V) 
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Fig.3. Output signal (rad/s) 

 

6.1.2 Results 

The RBF kernel is used to build a RKHS model. 

The observations used in the identification and 

validation phases are collected over two separate 

windows and their numbers are respectively 80 and 

220. 

The input vector 
dx   of RKHS model is given 

by: 

 

     1
T

i i i
x u y

 
                                              (18) 

The optimal RKHS parameter are determined using 

genetic algorithm and the values are respectively 

21    and -410  . 

In Figs. 4 and 5, the RKHS model and the 

benchmark outputs in the learning and validation 

phases are presented. We remark that the model 

output is in concordance with the system output. 

The Mean Square Error (MSE) is equal to 

49.8910 % in the learning phase and 0.0063% in the 

validation one. This shows the good performances 

of the Genetic Algorithms. 
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Fig.4.  Process and  RKHS model outputs during the 

identification phase 
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Fig.5. Process and RKHS  model outputs during the 

validation phase 

6.2 Application to the benchmark: 

Winner Hammerstein Benchmark 

6.2.1 Process description 

The process to be identified is sketched by Fig. 6. It 

consists on an electronic nonlinear system with a 

Wiener Hammerstein structure that was built by 

Gerd Vendesteen [17]. This benchmark represents a 

challenge to identify using kernel methods. 

 

 

 

Fig.6. Wiener Hammerstein structure 

 

6.2.2  Results 

The input vector x  is: 

            
 

     

   

1 2 4

15

15 1

, , ,...,

,

T
k k k

k

k k

u u u
x

u y

  

 

  
  
  

        (19) 

The Exponential Radial Basis Function kernel 

(ERBF) is used to construct a RKHS model. The 

observations uses in the identification and validation 

phases are respectively 200 and 500 new data. The 

optimal RKHS parameter are determined using 

genetic algorithm and the values are respectively 

29    and -71.2  10  . 

In Figs.7 and 8, the RKHS model and the 

benchmark outputs in the learning and validation 

phases are presented. We notice that the model 

output is in concordance with the system output, 

indeed the mean Square Error (MSE) is equal to 

0.02% in the learning phase and 0.33% in the 

validation one. This illustrates the advantages of the 

proposed approach. 
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Fig.7. Process and RKHS model outputs during the 

identification phase 
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Fig.8. Process and RKHS model outputs during the 

validation phase 

6.3 Application to the benchmark: 

Feedback’s Process Trainer PT326 

6.3.1 Process description 

The Feedback’s Process Trainer PT326 (Figs.9) [20] 

is a benchmark system for identification. The 

device’s function is like a hair dryer where the air is 

fanned through a tube and heated at the inlet. The air 

temperature is measured by a thermocouple at the 

outlet. The input u is the voltage over a mesh of 

resistor wires to heat the incoming air; the output T 

is the outlet air temperature. 

 

 

 

 

 

 

 

 

 

 

Fig.9. Process Trainer PT 326 

We have collected 600 input/output observations 

from the process at a sampling time of 0.08 s. In 

Figs.10 and 11, the evolution of the input voltage u 

and the output temperature are respectively 

presented. 
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Fig.10  Input signal u (V) 
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Fig.11. Output signal (T°C) 

 

6.3.2 Results 

To build the RKHS model we use the RBF kernel. 

We have used 200 observations in the identification 

phase and 350 new observations in the validation 

one. 
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The input vector 
dx   of RKHS model is given 

by: 

 

     1
T

i i i
x u y

 
                             (20) 

The optimal RKHS parameter are determined using 

genetic algorithm and the values are respectively 

100    and -59  10  . 

In Figs 12 and 13, the RKHS model and the 

benchmark outputs in the learning and validation 

phases are presented. We remark that the model 

output is in concordance with the system output. 

Therefore, the mean Square Error (MSE) is equal to 

0.0027% in the learning phase and 0.0026% in the 

validation one. This illustrates the advantages of the 

proposed approach. 
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Fig.12.  Process and  RKHS outputs during the 

identification phase 
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Fig.13.  Process and  RKHS outputs during the 

validation phase 

6.4 Chemical reactor modeling 

6.4.1 Process description 

 

The system is a Continuous Stirred Tank Reactor 

CSTR which is a nonlinear system used for the 

conduct of the chemical reactions [22]. A diagram of 

the reactor is presented in Figure 14. 

 

 

 

 

 

 

 

 

 

 

 

Fig.14. Chemical reactor Diagram 

The physical equations describing the system are: 

 

          2bC  : 

Concentration   

                  of reactant 2 

 0w  : feed of product 

 

 

h   

 

 bC  : Concentration product  

 

 2w : feed of  

       reactant 2 

 

 

 

             1w  : 

      feed of reactant 1  

                   1bC : 

Concentration                        

of reactant 1 
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dC t w t
C C t

dt h t

w t k C t
C C t

h t k C t
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  

 


      (21) 

where:  h t is the height of the mixture in the 

reactor of the feed of reactant 1 1w  (resp, reactant 2, 

2w ) with concentration 1Cb  (resp. 2Cb ). The feed of 

product of the reaction is 0w  and its concentration 

is bC . 1k  and 2k  are consuming reactant rate. The 

temperature in the reactor is assumed constant and 

equal to the ambient temperature. We are interested 

by modelling the subsystem presented in Figure 15. 

 

 

 

 

 

 

Fig.15. Considered subsystem 

6.4.2  Results 

For the purpose of the simulations, the CSTR model 

of the reactor provided with Simulink of Matlab is 

used.  

The input vector is: 

      
       1 2

1 ,  ,  
T

k k k k
x w cb cb

  
 

                           (22)                                (22) 

The Sigmoid kernel (tahn) is used to construct a 

RKHS model. The observations uses in the 

identification and validation phases are respectively 

100 and 200 new data. The optimal RKHS 

parameter are determined using Genetic Algorithm 

and the values are respectively 20, =1    and 

-210  . 

In Figs.16 and 17, the RKHS model and the 

benchmark outputs in the learning and validation 

phases are presented. We remark that the model 

output is in concordance with the system output, 

indeed the mean Square Error (MSE) is equal to 

84.5810 % in the learning phase and 85.5 10 % in 

the validation one. This show the advantages of the 

proposed approach. 
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Fig.16.  Process and  RKHS outputs during the 

identification phase 

0 20 40 60 80 100 120 140 160 180 200
10

11

12

13

14

15

16

17

18

19

iterations

C
b

 

 

system output

Model output

 

Fig.17.Process and  RKHS outputs during the 

validation phase 

  

  1w  : Feed of reactant 1 

 

bC  : Product 

       Concentration 
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7. Conclusion 

In this paper, a new approach based on Genetic 

Algorithms is proposed in order to determine the 

optimal parameters of the RKHS model. Through 

several results, we showed the advantages and the 

effectiveness of the proposed genetic algorithm in 

term of prediction error. This algorithm has been 

tested for modelling three benchmarks and the 

results were satisfactory. 
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